Brief Communication Circadian Regulation and Function of Voltage-Dependent Calcium Channels in the Suprachiasmatic Nucleus

نویسندگان

  • Sang-Soep Nahm
  • Yuhua Z. Farnell
  • William Griffith
  • David J. Earnest
چکیده

Individual neurons within the suprachiasmatic nuclei (SCNs) are capable of functioning as autonomous clocks and generating circadian rhythms in the expression of genes that form the molecular clockworks. Limited information is available on how these molecular oscillations in individual clock cells are coordinated to provide for the ensemble rhythmicity that is normally observed from the entire SCN. Because calcium influx via voltage-dependent calcium channels (VDCCs) has been implicated in the regulation of gene expression and synchronization of rhythmicity across the population of SCN clock cells, we first examined the rat SCN and an immortalized line of SCN cells (SCN2.2) for expression and circadian regulation of different VDCC 1 subunits. The rat SCN and SCN2.2 cells exhibited mRNA expression for all major types of VDCC 1 subunits. Relative levels of VDCC expression in the rat SCN and SCN2.2 cells were greatest for L-type channels, moderate for P/Qand T-type channels, and minimal for Rand N-type channels. Interestingly, both rat SCN and SCN2.2 cells showed rhythmic expression of P/Qand T-type channels. VDCC involvement in the regulation of molecular rhythmicity in SCN2.2 cells was then examined using the nonselective antagonist, cadmium. The oscillatory patterns of rPer2 and rBmal1 expression were abolished in cadmium-treated SCN2.2 cells without affecting cellular morphology and viability. These findings raise the possibility that the circadian regulation of VDCC activity may play an important role in maintaining rhythmic clock gene expression across an ensemble of SCN oscillators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus.

Individual neurons within the suprachiasmatic nuclei (SCNs) are capable of functioning as autonomous clocks and generating circadian rhythms in the expression of genes that form the molecular clockworks. Limited information is available on how these molecular oscillations in individual clock cells are coordinated to provide for the ensemble rhythmicity that is normally observed from the entire ...

متن کامل

Persistent subthreshold voltage-dependent cation single channels in suprachiasmatic nucleus neurons.

The hypothalamic suprachiasmatic nucleus (SCN) contains the primary circadian pacemaker in mammals, and transmits circadian signals by diurnal modulation of neuronal firing frequency. The ionic mechanisms underlying the circadian regulation of firing frequency are unknown, but may involve changes in membrane potential and voltage-gated ion channels. Here we describe novel tetrodotoxin- and nife...

متن کامل

Na(V)1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms.

Na(V)1.1 is the primary voltage-gated Na(+) channel in several classes of GABAergic interneurons, and its reduced activity leads to reduced excitability and decreased GABAergic tone. Here, we show that Na(V)1.1 channels are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus. Mice carrying a heterozygous loss of function mutation in the Scn1a gene (Scn1a(+/-)), which encodes the ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005